If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+39^2=89^2
We move all terms to the left:
x^2+39^2-(89^2)=0
We add all the numbers together, and all the variables
x^2-6400=0
a = 1; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·1·(-6400)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*1}=\frac{-160}{2} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*1}=\frac{160}{2} =80 $
| 10(x-10)=-100 | | 10x-1x=45 | | a(-3.75)=6.11 | | -10.36/s=4 | | -4=2(-4+k) | | 7-6(1+3b)=-15 | | 4v-5=-49 | | -2(3k+6)=24 | | -2w/5=12 | | 9(1+5f)=-35 | | 64+-5x=14 | | 3=-6+9p | | -8(6+x)=-152 | | 2(5-x)-3=(x-6) | | 2x*3-4=86 | | 0.9w+5.94=12.33 | | 10+1/7x=6 | | -3(-9+a)=6 | | 3x+6=7x+3 | | -3x-10+25=-18x-60 | | 6v+9=33 | | 2d=-9+d | | -3(y-5)=30 | | 0.9(w+6.6)=12.33 | | -7x+5+3x=27 | | v+7/9=3 | | 3.5(h+12)=0 | | 2x^2+5x-243=0 | | 27+5x+3=90 | | y-4.2=4.2 | | P=(g-9)18” | | -8-7g=-8g |